Friday, 21 July 2017

Moving Average Order 1


Médias móveis: quais são eles Entre os mais populares indicadores técnicos, médias móveis são usados ​​para medir a direção da tendência atual. Cada tipo de média móvel (normalmente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinada, a média resultante é então plotada em um gráfico, a fim de permitir que os comerciantes olhar para os dados suavizados, em vez de se concentrar nas flutuações do preço do dia-a-dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando-se a média aritmética de um dado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e dividiria o resultado por 10. Na Figura 1, a soma dos preços dos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, em vez disso, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em consideração os últimos 10 pontos de dados, a fim de dar aos comerciantes uma idéia de como um ativo é fixado o preço em relação aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser eliminados do conjunto e novos pontos de dados devem entrar para substituí-los. Assim, o conjunto de dados está em constante movimento para contabilizar novos dados à medida que se torna disponível. Esse método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) move-se para a direita eo último valor de 15 é eliminado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a média da diminuição do conjunto de dados, o que faz, nesse caso de 11 para 10. O que as médias móveis parecem uma vez? MA foram calculados, eles são plotados em um gráfico e, em seguida, conectado para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos de comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você vai crescer acostumado com eles como o tempo passa. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e como ela se parece, bem introduzir um tipo diferente de média móvel e examinar como ele difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a essa crítica, os comerciantes começaram a dar mais peso aos dados recentes, o que desde então levou à invenção de vários tipos de novas médias, a mais popular das quais é a média móvel exponencial (EMA). Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Novas informações. Aprender a equação um pouco complicada para o cálculo de um EMA pode ser desnecessário para muitos comerciantes, uma vez que quase todos os pacotes gráficos fazer os cálculos para você. No entanto, para você geeks matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há valor disponível para usar como o EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Fornecemos uma planilha de exemplo que inclui exemplos reais de como calcular uma média móvel simples e uma média móvel exponencial. A diferença entre o EMA e SMA Agora que você tem uma melhor compreensão de como o SMA eo EMA são calculados, vamos dar uma olhada em como essas médias são diferentes. Ao olhar para o cálculo da EMA, você vai notar que mais ênfase é colocada sobre os pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente à variação dos preços. Observe como a EMA tem um valor maior quando o preço está subindo, e cai mais rápido do que o SMA quando o preço está em declínio. Esta responsividade é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que significam os diferentes dias As médias móveis são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que desejar ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será às mudanças de preços. Quanto mais tempo o intervalo de tempo, menos sensível ou mais suavizado, a média será. Não há um frame de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual funciona melhor para você é experimentar com uma série de diferentes períodos de tempo até encontrar um que se adapta à sua estratégia. Médias móveis: como usá-los Subscreva as notícias para usar para as últimas informações e análise Obrigado por se inscrever no Investopedia Insights - Notícias para usar. Moving Average - MA BREAKING DOWN Média móvel - MA Como um exemplo SMA, considere uma segurança com o Após os preços de fechamento durante 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29 , 28 A MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados ​​quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Motivo ascendente é confirmado com um crossover de baixa, o que ocorre quando um MA de curto prazo cruza abaixo de um MA a longo prazo. Médias de Múltiplos - Simples e Exponencial Médias Móveis - Simples e Exponencial Introdução As médias móveis alisam os dados de preços para formar um indicador de tendência seguinte . Eles não prevêem a direção do preço, mas sim definir a direção atual com um atraso. As médias móveis são retardadas porque são baseadas em preços passados. Apesar desse atraso, as médias móveis ajudam a suavizar a ação dos preços e filtrar o ruído. Eles também formam os blocos de construção para muitos outros indicadores técnicos e sobreposições, como Bandas Bollinger. MACD eo Oscilador McClellan. Os dois tipos mais populares de médias móveis são a Média Móvel Simples (SMA) e a Média Móvel Exponencial (EMA). Essas médias móveis podem ser usadas para identificar a direção da tendência ou definir níveis potenciais de suporte e resistência. Here039s um gráfico com um SMA e um EMA nele: Cálculo simples da média móvel Uma média movente simples é dada forma computando o preço médio de uma segurança sobre um número específico dos períodos. A maioria das médias móveis são baseadas em preços de fechamento. Uma média móvel simples de 5 dias é a soma de cinco dias dos preços de fechamento dividida por cinco. Como seu nome indica, uma média móvel é uma média que se move. Os dados antigos são eliminados à medida que novos dados são disponibilizados. Isso faz com que a média se mova ao longo da escala de tempo. Abaixo está um exemplo de uma média móvel de 5 dias evoluindo ao longo de três dias. O primeiro dia da média móvel cobre simplesmente os últimos cinco dias. O segundo dia da média móvel cai o primeiro ponto de dados (11) e adiciona o novo ponto de dados (16). O terceiro dia da média móvel continua caindo o primeiro ponto de dados (12) e adicionando o novo ponto de dados (17). No exemplo acima, os preços aumentam gradualmente de 11 para 17 ao longo de um total de sete dias. Observe que a média móvel também aumenta de 13 para 15 ao longo de um período de cálculo de três dias. Observe também que cada valor de média móvel está logo abaixo do último preço. Por exemplo, a média móvel para o dia um é igual a 13 eo último preço é 15. Os preços dos quatro dias anteriores eram mais baixos e isso faz com que a média móvel fique atrasada. Cálculo da média móvel exponencial As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. A ponderação aplicada ao preço mais recente depende do número de períodos na média móvel. Há três etapas para calcular uma média móvel exponencial. Primeiro, calcule a média móvel simples. Uma média móvel exponencial (EMA) tem que começar em algum lugar assim que uma média móvel simples é usada como o EMA anterior do período anterior no primeiro cálculo. Em segundo lugar, calcular o multiplicador de ponderação. Em terceiro lugar, calcule a média móvel exponencial. A fórmula abaixo é para um EMA de 10 dias. Uma média móvel exponencial de 10 períodos aplica uma ponderação de 18,18 ao preço mais recente. Um EMA de 10 períodos também pode ser chamado de EMA 18.18. Um EMA de 20 períodos aplica uma ponderação de 9,52 ao preço mais recente (2 / (201) .0952). Observe que a ponderação para o período de tempo mais curto é mais do que a ponderação para o período de tempo mais longo. De fato, a ponderação cai pela metade cada vez que o período de média móvel dobra. Se você deseja uma porcentagem específica para uma EMA, use esta fórmula para convertê-la em períodos de tempo e, em seguida, insira esse valor como o parâmetro EMA039s: Abaixo está um exemplo de planilha de uma média móvel simples de 10 dias e um valor de 10- Dia média móvel exponencial para a Intel. As médias móveis simples são diretas e exigem pouca explicação. A média de 10 dias simplesmente se move conforme novos preços se tornam disponíveis e os preços antigos caem. A média móvel exponencial começa com o valor da média móvel simples (22,22) no primeiro cálculo. Após o primeiro cálculo, a fórmula normal assume o controle. Como um EMA começa com uma média móvel simples, seu valor verdadeiro não será realizado até 20 ou mais períodos mais tarde. Em outras palavras, o valor na planilha do Excel pode diferir do valor do gráfico por causa do curto período de retorno. Esta planilha só remonta 30 períodos, o que significa que o afeto da média móvel simples teve 20 períodos para se dissipar. StockCharts volta pelo menos 250 períodos (geralmente muito mais) para os seus cálculos para os efeitos da média móvel simples no primeiro cálculo totalmente dissipada. O fator de Lag Quanto maior a média móvel, mais o lag. Uma média móvel exponencial de 10 dias abraçará os preços muito de perto e virará logo após os preços virarem. Curtas médias móveis são como barcos de velocidade - ágil e rápido para mudar. Em contraste, uma média móvel de 100 dias contém muitos dados passados ​​que o desaceleram. As médias móveis mais longas são como os petroleiros do oceano - lethargic e lentos mudar. É preciso um movimento de preços maior e mais longo para uma média móvel de 100 dias para mudar de rumo. O gráfico acima mostra o SampP 500 ETF com uma EMA de 10 dias seguindo de perto os preços e uma moagem SMA de 100 dias mais alta. Mesmo com o declínio de janeiro-fevereiro, a SMA de 100 dias manteve o curso e não recusou. O SMA de 50 dias se encaixa em algum lugar entre as médias móveis de 10 e 100 dias quando se trata do fator de latência. Simples vs médias exponenciais Moving Embora existam diferenças claras entre médias móveis simples e médias móveis exponenciais, um não é necessariamente melhor do que o outro. As médias móveis exponenciais têm menos atraso e são, portanto, mais sensíveis aos preços recentes - e às recentes mudanças nos preços. As médias móveis exponenciais virarão antes de médias móveis simples. As médias móveis simples, por outro lado, representam uma verdadeira média de preços para todo o período de tempo. Como tal, as médias móveis simples podem ser mais adequadas para identificar níveis de suporte ou resistência. Preferência média móvel depende de objetivos, estilo analítico e horizonte de tempo. Chartists deve experimentar com ambos os tipos de médias móveis, bem como diferentes prazos para encontrar o melhor ajuste. O gráfico abaixo mostra a IBM com a SMA de 50 dias em vermelho ea EMA de 50 dias em verde. Ambos atingiram o pico no final de janeiro, mas o declínio no EMA foi mais nítida do que o declínio no SMA. A EMA apareceu em meados de fevereiro, mas a SMA continuou baixa até o final de março. Observe que a SMA apareceu mais de um mês após a EMA. Comprimentos e prazos A duração da média móvel depende dos objetivos analíticos. Curtas médias móveis (5-20 períodos) são mais adequados para as tendências de curto prazo e de negociação. Os cartistas interessados ​​em tendências de médio prazo optariam por médias móveis mais longas que poderiam estender 20-60 períodos. Investidores de longo prazo preferem médias móveis com 100 ou mais períodos. Alguns comprimentos de média móvel são mais populares do que outros. A média móvel de 200 dias é talvez a mais popular. Devido ao seu comprimento, esta é claramente uma média móvel a longo prazo. Em seguida, a média móvel de 50 dias é bastante popular para a tendência de médio prazo. Muitos chartists usam as médias móveis de 50 dias e de 200 dias junto. Curto prazo, uma média móvel de 10 dias foi bastante popular no passado porque era fácil de calcular. Um simplesmente adicionou os números e moveu o ponto decimal. Identificação de tendências Os mesmos sinais podem ser gerados usando médias móveis simples ou exponenciais. Como mencionado acima, a preferência depende de cada indivíduo. Esses exemplos abaixo usarão médias móveis simples e exponenciais. O termo média móvel se aplica a médias móveis simples e exponenciais. A direção da média móvel transmite informações importantes sobre os preços. Uma média móvel em ascensão mostra que os preços estão aumentando. Uma média móvel em queda indica que os preços, em média, estão caindo. A subida da média móvel de longo prazo reflecte uma tendência de alta a longo prazo. A queda da média móvel a longo prazo reflecte uma tendência de baixa a longo prazo. O gráfico acima mostra 3M (MMM) com uma média móvel exponencial de 150 dias. Este exemplo mostra quão bem as médias móveis funcionam quando a tendência é forte. A EMA de 150 dias recusou-se em novembro de 2007 e novamente em janeiro de 2008. Observe que foi necessário um declínio de 15 para reverter a direção dessa média móvel. Estes indicadores de atraso identificam inversões de tendência à medida que ocorrem (na melhor das hipóteses) ou depois de ocorrerem (na pior das hipóteses). MMM continuou menor em março de 2009 e, em seguida, subiu 40-50. Observe que a EMA de 150 dias não apareceu até depois desse aumento. Uma vez que o fez, no entanto, MMM continuou maior nos próximos 12 meses. As médias móveis trabalham brilhantemente em tendências fortes. Crossovers duplos Duas médias móveis podem ser usadas juntas para gerar sinais cruzados. Na Análise Técnica dos Mercados Financeiros. John Murphy chama isso de método de cruzamento duplo. Os cruzamentos duplos envolvem uma média móvel relativamente curta e uma média móvel relativamente longa. Como com todas as médias móveis, o comprimento geral da média móvel define o prazo para o sistema. Um sistema que utilizasse um EMA de 5 dias e um EMA de 35 dias seria considerado de curto prazo. Um sistema usando uma SMA de 50 dias e um SMA de 200 dias seria considerado de médio prazo, talvez até de longo prazo. Um crossover de alta ocorre quando a média móvel mais curta cruza acima da média móvel mais longa. Isso também é conhecido como uma cruz de ouro. Um crossover de baixa ocorre quando a média móvel mais curta cruza abaixo da média móvel mais longa. Isso é conhecido como uma cruz morta. Os crossovers médios móveis produzem sinais relativamente atrasados. Afinal, o sistema emprega dois indicadores de atraso. Quanto mais longos os períodos de média móvel, maior o atraso nos sinais. Esses sinais funcionam muito bem quando uma boa tendência se apodera. No entanto, um sistema de crossover média móvel irá produzir lotes de Whipsaws na ausência de uma forte tendência. Há também um método de crossover triplo que envolve três médias móveis. Mais uma vez, um sinal é gerado quando a média móvel mais curta atravessa as duas médias móveis mais longas. Um simples sistema de crossover triplo pode envolver médias móveis de 5 dias, 10 dias e 20 dias. O gráfico acima mostra Home Depot (HD) com um EMA de 10 dias (linha pontilhada verde) e EMA de 50 dias (linha vermelha). A linha preta é o fechamento diário. Usando um crossover média móvel teria resultado em três whipsaws antes de pegar um bom comércio. O EMA de 10 dias quebrou abaixo do EMA de 50 dias em outubro atrasado (1), mas este não durou por muito tempo enquanto os 10 dias se moveram para trás acima em novembro meados de (2). Este cruzamento durou mais, mas o próximo crossover de baixa em janeiro (3) ocorreu perto dos níveis de preços de novembro, resultando em outra whipsaw. Esta cruz bearish não durou por muito tempo enquanto o EMA de 10 dias moveu para trás acima dos 50 dias alguns dias mais tarde (4). Depois de três sinais ruins, o quarto sinal prefigurou um movimento forte como o estoque avançou mais de 20. Existem dois takeaways aqui. Primeiramente, os crossovers são prone ao whipsaw. Um filtro de preço ou tempo pode ser aplicado para ajudar a evitar whipsaws. Os comerciantes podem exigir que o crossover durar 3 dias antes de agir ou exigir a EMA de 10 dias para mover acima / abaixo do EMA de 50 dias por um determinado montante antes de agir. Em segundo lugar, o MACD pode ser usado para identificar e quantificar esses cruzamentos. MACD (10,50,1) mostrará uma linha representando a diferença entre as duas médias móveis exponenciais. MACD torna-se positivo durante uma cruz de ouro e negativo durante uma cruz morta. O Oscilador de Preço Percentual (PPO) pode ser usado da mesma forma para mostrar diferenças percentuais. Observe que o MACD e o PPO são baseados em médias móveis exponenciais e não coincidirão com médias móveis simples. Este gráfico mostra Oracle (ORCL) com a EMA de 50 dias, EMA de 200 dias e MACD (50,200,1). Havia quatro crossovers de média móvel durante um período de 2 1/2 anos. Os três primeiros resultaram em whipsaws ou maus negócios. Uma tendência sustentada começou com o quarto crossover como ORCL avançado para os 20s meados. Mais uma vez, os crossovers de média móvel funcionam muito bem quando a tendência é forte, mas produzem perdas na ausência de uma tendência. Crossovers de preço As médias móveis também podem ser usadas para gerar sinais com crossovers de preços simples. Um sinal de alta é gerado quando os preços se movem acima da média móvel. Um sinal de baixa é gerado quando os preços se movem abaixo da média móvel. Os crossovers do preço podem ser combinados para negociar dentro da tendência mais grande. A média móvel mais longa define o tom para a tendência maior e a média móvel mais curta é usada para gerar os sinais. Um olharia para cruzes de preço de alta somente quando os preços já estão acima da média móvel mais longa. Isso seria negociar em harmonia com a maior tendência. Por exemplo, se o preço estiver acima da média móvel de 200 dias, os chartistas só se concentrarão nos sinais quando o preço se mover acima da média móvel de 50 dias. Obviamente, um movimento abaixo da média móvel de 50 dias precederia tal sinal, mas tais cruzamentos de baixa seriam ignorados porque a tendência maior está para cima. Uma cruz bearish sugeriria simplesmente um pullback dentro de um uptrend mais grande. Uma volta cruzada acima da média móvel de 50 dias indicaria uma subida dos preços e continuação da maior tendência de alta. O gráfico seguinte mostra a Emerson Electric (EMR) com a EMA de 50 dias e a EMA de 200 dias. O estoque movido acima e realizada acima da média móvel de 200 dias em agosto. Houve mergulhos abaixo dos 50 dias EMA no início de novembro e novamente no início de fevereiro. Os preços recuaram rapidamente acima dos 50 dias EMA para fornecer sinais de alta (setas verdes) em harmonia com a maior tendência de alta. MACD (1,50,1) é mostrado na janela do indicador para confirmar cruzamentos de preços acima ou abaixo do EMA de 50 dias. O EMA de 1 dia é igual ao preço de fechamento. MACD (1,50,1) é positivo quando o fechamento está acima do EMA de 50 dias e negativo quando o fechamento está abaixo do EMA de 50 dias. Suporte e Resistência As médias móveis também podem atuar como suporte em uma tendência de alta e resistência em uma tendência de baixa. Uma tendência de alta de curto prazo pode encontrar suporte perto da média móvel simples de 20 dias, que também é usada em Bandas de Bollinger. Uma tendência de alta de longo prazo pode encontrar apoio perto da média móvel simples de 200 dias, que é a média móvel mais popular a longo prazo. Se fato, a média móvel de 200 dias pode oferecer suporte ou resistência simplesmente porque é tão amplamente utilizado. É quase como uma profecia auto-realizável. O gráfico acima mostra o NY Composite com a média móvel simples de 200 dias de meados de 2004 até o final de 2008. Os 200 dias fornecidos suportam várias vezes durante o avanço. Uma vez que a tendência reverteu com uma quebra de apoio superior dupla, a média móvel de 200 dias agiu como resistência em torno de 9500. Não espere suporte exato e níveis de resistência de médias móveis, especialmente as médias móveis mais longas. Os mercados são impulsionados pela emoção, o que os torna propensos a superações. Em vez de níveis exatos, as médias móveis podem ser usadas para identificar zonas de suporte ou de resistência. Conclusões As vantagens de usar médias móveis precisam ser ponderadas contra as desvantagens. As médias móveis são a tendência que segue, ou retardar, os indicadores que serão sempre um passo atrás. Isso não é necessariamente uma coisa ruim embora. Afinal, a tendência é o seu amigo e é melhor para o comércio na direção da tendência. As médias móveis asseguram que um comerciante está em linha com a tendência atual. Mesmo que a tendência é seu amigo, os títulos gastam uma grande quantidade de tempo em intervalos de negociação, o que torna as médias móveis ineficazes. Uma vez em uma tendência, as médias móveis mantê-lo-ão dentro, mas dar também sinais atrasados. Don039t esperar para vender no topo e comprar na parte inferior usando médias móveis. Tal como acontece com a maioria das ferramentas de análise técnica, médias móveis não devem ser utilizados por conta própria, mas em conjunto com outras ferramentas complementares. Os cartistas podem usar médias móveis para definir a tendência geral e, em seguida, usar RSI para definir overbought ou oversold níveis. Adicionando médias móveis para gráficos StockCharts As médias móveis estão disponíveis como um recurso de sobreposição de preços na bancada do SharpCharts. Usando o menu suspenso Sobreposições, os usuários podem escolher uma média móvel simples ou uma média móvel exponencial. O primeiro parâmetro é usado para definir o número de períodos de tempo. Um parâmetro opcional pode ser adicionado para especificar qual campo de preço deve ser usado nos cálculos - O para o Open, H para o Alto, L para o Baixo e C para o Close. Uma vírgula é usada para separar os parâmetros. Outro parâmetro opcional pode ser adicionado para deslocar as médias móveis para a esquerda (passado) ou para a direita (futuro). Um número negativo (-10) deslocaria a média móvel para a esquerda 10 períodos. Um número positivo (10) deslocaria a média móvel para o direito 10 períodos. Múltiplas médias móveis podem ser superados o preço parcela simplesmente adicionando outra linha de superposição para a bancada. Os membros do StockCharts podem alterar as cores eo estilo para diferenciar entre várias médias móveis. Depois de selecionar um indicador, abra Opções Avançadas clicando no pequeno triângulo verde. As Opções Avançadas também podem ser usadas para adicionar uma sobreposição média móvel a outros indicadores técnicos como RSI, CCI e Volume. Clique aqui para um gráfico ao vivo com várias médias móveis diferentes. Usando Médias Móveis com Varreduras StockCharts Aqui estão alguns exemplos de varreduras que os membros da StockCharts podem usar para varrer para várias situações de média móvel: Bullish Moving Average Cross: Esta varredura procura ações com uma média móvel em ascensão de 150 dias simples e uma linha de alta dos 5 EMA de dia e EMA de 35 dias. A média móvel de 150 dias está subindo, desde que ela esteja negociando acima de seu nível cinco dias atrás. Um cruzamento de alta ocorre quando o EMA de 5 dias se move acima do EMA de 35 dias acima do volume médio. Bearish Moving Average Cross: Esta pesquisa procura por ações com uma queda de 150 dias de média móvel simples e uma cruz de baixa dos 5 dias EMA e 35 dias EMA. A média móvel de 150 dias está caindo enquanto ela está negociando abaixo de seu nível cinco dias atrás. Uma cruz de baixa ocorre quando a EMA de 5 dias se move abaixo da EMA de 35 dias acima do volume médio. Estudo adicional O livro de John Murphy tem um capítulo dedicado a médias móveis e seus vários usos. Murphy abrange os prós e os contras de médias móveis. Além disso, Murphy mostra como as médias móveis funcionam com Bollinger Bands e sistemas de negociação baseados em canais. Análise Técnica dos Mercados Financeiros John Murphy2.1 Modelos de Média Móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de série temporal para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt overset N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar o software para verificar se sinais negativos ou positivos foram utilizados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observa-se que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente, mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Valores das duas autocorrelações não nulas são Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Em que w t iid N (0,1). O gráfico da série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, o ACF de amostra não corresponde exactamente ao padrão teórico. ACF para modelos MA (q) gerais Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O 1/1 recíproco dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 / (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto que 1 1 / 0,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de AR diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes tenham valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 atrasos de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Hg) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto (a0) Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer média 10. Padrão de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (atrasos, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, principal série MA (2) simulada) acf (x, xlimc (1,10), x2) MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo inversível MA é aquele que pode ser escrito como um modelo de ordem infinita AR que converge para que os coeficientes AR convergem para 0 como nos movemos infinitamente no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substituimos a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertido. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos remontando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que uma exigência para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Os processos de erro de mediação móvel NavigationAutoregressive (erros ARMA) e outros que envolvem atrasos de termos de erro podem ser estimados usando declarações FIT e simulados ou previstos usando declarações SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivo. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido pelo PROC MODEL como A função ZLAG deve ser usada para que os modelos MA trunquem a recursividade dos atrasos. Isso garante que os erros defasados ​​começam em zero na fase de antecipação e não propagam valores ausentes quando faltam as variáveis ​​de período de latência e garantem que os erros futuros sejam zero, em vez de faltarem durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. O modelo geral ARMA (p, q) tem a seguinte forma: Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que desejar para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte maneira: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA normalmente funcionam se o modelo se encaixa bem nos dados e o problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo de alta ordem AR, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis, se disponível). Em seguida, use outra instrução FIT para estimar os parâmetros ARMA somente, usando os valores de parâmetro estrutural da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SAS / ETS são os seguintes: mínimos quadrados condicionais (procedimentos ARMA e MODELO) mínimos máximos incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (Procedimento AUTOREG somente) Hildreth-Lu, que exclui as primeiras p observações (procedimento MODEL somente) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações de CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais de estimativa de termos de erros de média móvel não é ótimo porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados ​​iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar esse problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro da faixa de inversão. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A macro AR A macro SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SAS / ETS, e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita auto-regressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro precedente, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de opção LIST para um modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em defasagens selecionadas. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Lista de Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Auto-regressão vetorial irrestrita Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​são exclusivos. Use um valor de processname curto para o processo se as estimativas de parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis ​​é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições de que a matriz de coeficientes seja 0 em intervalos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes com atraso 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis ​​em vez de nos erros usando a opção TYPEV. Se você quiser modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de auto-regressão do vetor, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis ​​necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR mas é esperar por mais informações especificadas em chamadas AR mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist irá usar todos os intervalos 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SAS / ETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SAS / IML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo MA de vetor não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa de CLS é usada para o processo de vetor. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média de Vetores Restrita Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA mas é aguardar informações adicionais especificadas em chamadas de MA posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Especifica a lista de defasagens em que os termos MA devem ser adicionados.

No comments:

Post a Comment