Monday 24 July 2017

Moving Average Pandas


É importante notar que existem várias maneiras de definir o RSI. É comumente definido em pelo menos duas maneiras: usando uma média móvel simples (SMA) como acima, ou usando uma média móvel exponencial (EMA). Heres um trecho de código que calcula ambas as definições de RSI e plots-los para comparação. Estou descartando a primeira linha depois de tomar a diferença, uma vez que é sempre NaN por definição. Observe que ao usar EMA é preciso ter cuidado: uma vez que ele inclui uma memória que vai voltar para o início dos dados, o resultado depende de onde você começa Por esta razão, normalmente as pessoas vão adicionar alguns dados no início, digamos 100 etapas de tempo , E depois cortar os primeiros 100 valores RSI. No gráfico abaixo, pode-se ver a diferença entre o RSI calculado usando SMA e EMA: o SMA um tende a ser mais sensível. Observe que o RSI baseado em EMA tem seu primeiro valor finito no primeiro passo de tempo (que é o segundo tempo do período original, devido ao descarte da primeira linha), enquanto o RSI baseado em SMA tem seu primeiro valor finito no 14º passo. Isso ocorre porque, por padrão, rollingmean () retorna apenas um valor finito quando há valores suficientes para preencher a janela. BiagioChirico, obrigado - Eu não tenho tempo para verificar em detalhes, mas uma possibilidade é que a diferença é devido ao que eu mencionei no post, ou seja, que há alguma arbitrariedade causada pela quantidade de dados que você incluir antes da janela que você está Olhando, se houver (eu dei 100 dias como um exemplo). Por Michael Halls-Moore em 21 de janeiro de 2014 No artigo anterior sobre Pesquisa Backtesting Ambientes Em Python Com Pandas criamos um ambiente de backtesting baseado em pesquisa orientada a objeto e Testado em uma estratégia de previsão aleatória. Neste artigo, faremos uso da maquinaria que introduzimos para realizar pesquisas sobre uma estratégia real, a saber, o Crossover Médio Móvel na AAPL. Estratégia de Crossover Média em Movimento A técnica de Crossover de Moving Average é uma estratégia de momentum simplista extremamente bem conhecida. É freqüentemente considerado o exemplo Hello World para negociação quantitativa. A estratégia aqui descrita é longa. São criados dois filtros separados de média móvel simples, com períodos de retrocesso variáveis, de uma série temporal específica. Os sinais para comprar o ativo ocorrem quando a média móvel de retrocesso mais curta excede a média móvel de maior tempo de retrocesso. Se a média mais longa subseqüentemente exceder a média mais curta, o ativo é vendido de volta. A estratégia funciona bem quando uma série de tempo entra em um período de forte tendência e, em seguida, lentamente inverte a tendência. Para este exemplo, eu escolhi a Apple, Inc. (AAPL) como a série de tempo, com um lookback curto de 100 dias e um lookback longo de 400 dias. Este é o exemplo fornecido pela biblioteca de negociação algorítmica do zipline. Assim, se queremos implementar nosso próprio backtester, precisamos garantir que ele corresponda aos resultados em tirolesa, como um meio básico de validação. Implementação Certifique-se de que segue o tutorial anterior aqui. Que descreve como a hierarquia de objeto inicial para o backtester é construída, caso contrário, o código abaixo não funcionará. Para essa implementação em particular, usei as seguintes bibliotecas: A implementação do macross. py requer backtest. py do tutorial anterior. O primeiro passo é importar os módulos e objetos necessários: Como no tutorial anterior, vamos subclassificar a classe base Abstract de Estratégia para produzir MovingAverageCrossStrategy. Que contém todos os detalhes sobre como gerar os sinais quando as médias móveis de AAPL cruzar uns aos outros. O objeto requer uma janela curta e uma janela longa sobre a qual operar. Os valores foram ajustados para padrões de 100 dias e 400 dias respectivamente, que são os mesmos parâmetros usados ​​no exemplo principal de tirolesa. As médias móveis são criadas usando a função rollingmean pandas sobre o preço de fecho barsClose do estoque AAPL. Uma vez construídas as médias móveis individuais, a Série de sinais é gerada ajustando a coluna igual a 1,0 quando a média móvel curta é maior que a média móvel longa, ou 0,0 caso contrário. A partir daí, as ordens de posição podem ser geradas para representar sinais de negociação. O MarketOnClosePortfolio é subclassificado do Portfolio. Que é encontrado em backtest. py. É quase idêntico à implementação descrita no tutorial anterior, com a exceção de que as negociações são agora realizadas em uma base Close-to-Close, em vez de uma base Open-to-Open. Para obter detalhes sobre como o objeto Portfolio está definido, consulte o tutorial anterior. Ive deixou o código em para a integridade e para manter este tutorial auto-contido: Agora que as classes MovingAverageCrossStrategy e MarketOnClosePortfolio foram definidas, uma função principal será chamado para amarrar todas as funcionalidades em conjunto. Além disso, o desempenho da estratégia será analisado através de um gráfico da curva de equivalência patrimonial. O objeto DataReader do pandas faz o download dos preços OHLCV das ações da AAPL para o período de 1º de janeiro de 1990 a 1º de janeiro de 2002, momento em que os sinais DataFrame são criados para gerar os sinais long-only. Subseqüentemente, a carteira é gerada com uma base de capital inicial de 100.000 USD e os retornos são calculados na curva de patrimônio líquido. O passo final é usar matplotlib para traçar um gráfico de dois dígitos de ambos os preços da AAPL, superposto com as médias móveis e sinais de compra / venda, bem como a curva de equidade com os mesmos sinais de compra / venda. O código de plotagem é obtido (e modificado) a partir do exemplo de implementação da tirolesa. A saída gráfica do código é a seguinte. Eu fiz uso do comando IPython colar para colocar isso diretamente no console IPython enquanto no Ubuntu, para que a saída gráfica permaneceu na vista. Os upticks rosa representam a compra do estoque, enquanto os downticks pretos representam vendê-lo de volta: Como pode ser visto a estratégia perde dinheiro durante o período, com cinco negócios de ida e volta. Isto não é surpreendente, tendo em conta o comportamento da AAPL ao longo do período, que registou uma ligeira tendência descendente, seguida de um aumento significativo a partir de 1998. O período de retrocesso dos sinais da média móvel é bastante grande e isso afectou o lucro do comércio final , O que de outra forma pode ter feito a estratégia rentável. Em artigos subseqüentes, criaremos um meio mais sofisticado de analisar o desempenho, bem como descrevendo como otimizar os períodos de retorno dos sinais individuais de média móvel. Michael Halls-Moore Mike é o fundador da QuantStart e tem estado envolvido na indústria de finanças quantitativas nos últimos cinco anos, principalmente como um desenvolvedor quant e mais tarde como consultor comerciante quant para hedge funds. Moving média e modelos de suavização exponencial Como uma primeira Passo em mover-se para além de modelos de média, modelos de caminhada aleatória, e modelos de tendência linear, padrões não-sazonais e tendências podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é localmente estacionária com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e então usamos isso como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio e o modelo aleatório-andar-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é muitas vezes chamado de uma versão quotsmoothedquot da série original, porque a média de curto prazo tem o efeito de suavizar os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série temporal Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) / 2, o que implica que a estimativa da média local tende a ficar para trás Valor real da média local em cerca de (m1) / 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) / 2 relativa ao período para o qual a previsão é calculada: é a quantidade de tempo em que as previsões tendem a ficar atrás dos pontos de inflexão na dados. Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais pequenos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentarmos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: A média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é de 3 ((51) / 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há nenhuma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) / 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de inflexão em cerca de 10 períodos. Qual a quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações igualmente e completamente ignora todas as observações anteriores. (Voltar ao início da página.) Marrons Simples Exponencial Suavização (exponencialmente ponderada média móvel) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que, se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1/945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado através da avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1/945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - ie. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é de 1 / 0.2961 3.4 períodos, que é semelhante ao de um 6-termo simples de movimento média. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA eo modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoavelmente aparente, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. De modo que a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quimétrico ARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante à série aqui analisada, o coeficiente estimado de MA (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa apropriada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Retornar ao início da página.) Browns Linear (ie double) Suavização exponencial Os modelos SMA e SES assumem que não há nenhuma tendência de qualquer tipo nos dados (que geralmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências a curto prazo Se uma série exibe uma taxa variável de crescimento ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo de suavização exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo). A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida pela aplicação de suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, enganar um pouco e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não são permitidos variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é computada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de alisamento de tendência 946 é análoga à da constante de alisamento de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é usada na estimativa do nível local da série, a idade média dos dados que é usada na estimativa da tendência local é proporcional a 1/946, embora não exatamente igual a isto. Neste caso, isto é 1 / 0.006 125. Este número é muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100 , Assim que este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pelo ajuste do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto estar estimando uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram estimados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de suavização constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo uma média da tendência ao longo dos últimos 20 períodos aproximadamente. Here8217s o que o lote de previsão parece se ajustarmos 946 0.1 mantendo 945 0.3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Alisamento exponencial simples com alfa 0,5 (D) Alisamento exponencial simples com alfa 0,3 (E) Alisamento exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, então realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos quanto à existência de uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também fornecerá mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 se torna maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. Ferramentas de Computação Analogamente, o DataFrame tem um método cov para calcular covariâncias em pares entre as séries no DataFrame, também excluindo NA / valores nulos. Assumindo que os dados ausentes estão faltando aleatoriamente, isso resulta em uma estimativa para a matriz de covariância que é imparcial. No entanto, para muitas aplicações esta estimativa pode não ser aceitável porque a matriz de covariância estimada não é garantida para ser semi-definitiva positiva. Isto pode levar a correlações estimadas com valores absolutos que são maiores do que um, e / ou uma matriz de covariância não-invertible. Consulte Estimativa de matrizes de covariância para obter mais detalhes. DataFrame. cov também suporta uma palavra-chave opcional minperiods que especifica o número mínimo necessário de observações para cada par de colunas, a fim de ter um resultado válido. Os pesos usados ​​na janela são especificados pela palavra-chave wintype. A lista de tipos reconhecidos são: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (necessidades beta) gaussian (necessidades std) generalgaussian (precisa de poder, largura) slepian (precisa de largura). Observe que a janela do boxcar é equivalente a mean (). Para algumas funções de janelas, parâmetros adicionais devem ser especificados: Para. sum () com um wintype. Não há normalização feita para os pesos para a janela. Passando pesos personalizados de 1, 1, 1 irá produzir um resultado diferente do que passando pesos de 2, 2, 2. Por exemplo. Ao passar um wintype em vez de especificar explicitamente os pesos, os pesos já estão normalizados para que o maior peso seja 1. Em contraste, a natureza do cálculo. mean () é tal que os pesos são normalizados em relação uns aos outros. Os pesos de 1, 1, 1 e 2, 2, 2 produzem o mesmo resultado. Rolling de reconhecimento de tempo na versão 0.19.0. Novo na versão 0.19.0 são a capacidade de passar um offset (ou conversível) para um método. rolling () e tê-lo produzir janelas de tamanho variável com base na janela de tempo passada. Para cada ponto de tempo, isso inclui todos os valores anteriores ocorrendo dentro do delta de tempo indicado. Isto pode ser particularmente útil para um índice de frequência de tempo não-regular. Este é um índice de freqüência regular. Usando um parâmetro de janela inteiro funciona para rolar ao longo da freqüência da janela. Especificar um deslocamento permite uma especificação mais intuitiva da freqüência de rolamento. Usando um índice não regular, mas ainda monotônico, rolar com uma janela de número inteiro não dá nenhum cálculo especial. A utilização da especificação de tempo gera janelas variáveis ​​para estes dados esparsos. Além disso, agora permitimos que um opcional parâmetro para especificar uma coluna (em vez do padrão do índice) em um DataFrame. Rolling vs Resampling Time-aware Usando. rolling () com um índice baseado em tempo é bastante semelhante a resampling. Ambos operam e realizam operações redutoras em objetos pandas indexados no tempo. Ao usar. rolling () com um offset. O deslocamento é um tempo-delta. Tome uma janela olhando para trás-no tempo, e agregar todos os valores nessa janela (incluindo o ponto final, mas não o ponto de início). Este é o novo valor nesse ponto no resultado. Estas são janelas de tamanho variável no espaço de tempo para cada ponto da entrada. Você obterá um resultado do mesmo tamanho que a entrada. Ao usar. resample () com um deslocamento. Construa um novo índice que é a freqüência do deslocamento. Para cada compartimento de freqüência, o agregado aponta da entrada dentro de uma janela que olha para trás-no tempo que caem nesse compartimento. O resultado dessa agregação é a saída desse ponto de freqüência. As janelas são tamanho de tamanho fixo no espaço de freqüência. Seu resultado terá a forma de uma freqüência regular entre o min eo máximo do objeto de entrada original. Para resumir. Rolling () é uma operação de janela baseada em tempo, enquanto. resample () é uma operação de janela baseada em freqüência. Centralização do Windows Por padrão, as etiquetas são definidas para a borda direita da janela, mas uma palavra-chave central está disponível para que as etiquetas possam ser definidas no centro. Funções de janelas binárias cov () e corr () podem calcular as estatísticas da janela em movimento sobre duas séries ou qualquer combinação de DataFrame / Series ou DataFrame / DataFrame. Aqui está o comportamento em cada caso: duas séries. Calcular a estatística para o emparelhamento. DataFrame / Series. Calcular as estatísticas para cada coluna do DataFrame com a série passada, retornando um DataFrame. DataFrame / DataFrame. Por padrão, calcular a estatística para nomes de colunas correspondentes, retornando um DataFrame. Se o argumento de palavra-chave pairwiseTrue é passado, em seguida, calcula a estatística para cada par de colunas, retornando um painel cujos itens são as datas em questão (consulte a próxima seção). Calculando as covariâncias e as correlações em pares de rotação Na análise de dados financeiros e em outros campos, é comum calcular covariâncias e matrizes de correlação para uma coleção de séries temporais. Muitas vezes também se interessa por matrizes de covariância de janela móvel e de correlação. Isso pode ser feito passando o argumento de palavra-chave pairwise, que no caso de entradas DataFrame irá render um painel cujos itens são as datas em questão. No caso de um único argumento de DataFrame, o argumento pairwise pode até ser omitido: Os valores ausentes são ignorados e cada entrada é calculada usando as observações completas pairwise. Consulte a seção de covariância para ressalvas associadas a este método de cálculo de matrizes de covariância e correlação. Além de não ter um parâmetro de janela, essas funções têm as mesmas interfaces que suas contrapartes de rolagem. Como acima, os parâmetros que todos aceitam são: minperiods. Limite de pontos de dados não nulos a exigir. O padrão é o mínimo necessário para calcular estatística. Nenhum NaNs será emitido uma vez que os pontos de dados não-nulos de minperiods foram vistos. centro. Boolean, se deseja definir os rótulos no centro (o padrão é False) A saída dos métodos. rolling e. expanding não retorna um NaN se houver pelo menos valores nulos de minperiods na janela atual. Isso difere de cumsum. Cumprod. Cummax. E cummin. Que retornam NaN na saída onde quer que um NaN seja encontrado na entrada. Uma estatística de janela em expansão será mais estável (e menos responsiva) do que a sua contrapartida de janela de rolamento à medida que o tamanho de janela crescente diminui o impacto relativo de um ponto de dados individual. Como um exemplo, aqui está a saída mean () para o conjunto de dados de séries temporais anteriores: Exponentially Weighted Windows Um conjunto relacionado de funções são exponencialmente ponderadas versões de várias das estatísticas acima. Uma interface semelhante ao. rolling e. expanding é acessada pelo método. ewm para receber um objeto EWM. Uma série de métodos de expansão EW (exponencialmente ponderada) são fornecidos: Suavização com médias ponderadas ponderadas exponencialmente Uma média móvel toma uma série de tempo ruidosa e substitui cada valor com o valor médio de uma vizinhança sobre o valor dado. Este bairro pode consistir em dados puramente históricos, ou pode ser centrado sobre o valor dado. Além disso, os valores no bairro podem ser ponderados usando diferentes conjuntos de pesos. Aqui está um exemplo de uma média móvel ponderada de três pontos, usando dados históricos, Aqui, representa o sinal suavizado e representa a série de tempo ruidosa. Em contraste com as médias móveis simples, uma média móvel exponencialmente ponderada (EWMA) ajusta um valor de acordo com uma soma exponencialmente ponderada de todos os valores anteriores. Esta é a idéia básica, Isso é bom porque você não precisa se preocupar com ter uma janela de três pontos, versus uma janela de cinco pontos, ou se preocupar com a adequação de seu esquema de ponderação. Com o EWMA, as perturbações anteriores 8220 lembradas, 8221 e 8220 são esquecidas, 8221 pelo termo na última equação, enquanto que com uma janela ou vizinhança com limites discretos, uma perturbação é esquecida assim que passa para fora da janela. Avaliando o EWMA para acomodar as tendências Depois de ler sobre EWMAs em um livro de análise de dados, eu tinha ido longitudinalmente feliz usando esta ferramenta em cada aplicação única suavização que me deparei. Não foi até mais tarde que eu aprendi que a função EWMA é realmente apenas adequado para dados estacionários, ou seja, dados sem tendências ou sazonalidade. In particular, the EWMA function resists trends away from the current mean that it8217s already 8220seen8221. So, if you have a noisy hat function that goes from 0, to 1, and then back to 0, then the EWMA function will return low values on the up-hill side, and high values on the down-hill side. One way to circumvent this is to smooth the signal in both directions, marching forward, and then marching backward, and then average the two. Here, we will use the EWMA function provided by the pandas module. Holt-Winters Second Order EWMA And here is some Python code implementing the Holt-Winters second order method on another noisy hat function, as before. Post navigation Recent Posts Archives

No comments:

Post a Comment